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Bartonella is a genus of gram-negative bacteria that includes a variety of human and veterinary pathogens. These 
pathogens are transmitted from reservoirs to secondary hosts through the bite of arthropod vectors including 
lice and fleas. Once in the secondary host, the bacteria cause a variety of pathologies including cat-scratch 
disease, endocarditis, and myocarditis. Reservoirs of these bacteria are numerous and include several species of 
large mammals, mesocarnivores, and small mammals. Research on reservoirs of these bacteria has focused on 
western North America, Europe, and Asia, with little focus on the eastern and central United States. We assessed 
the prevalence of zoonotic Bartonella species among prairie-dwelling rodent species in the midwestern United 
States. Tissue samples (n = 700) were collected between 2015 and 2017 from five rodent species and screened 
for the presence of Bartonella DNA via PCR and sequencing of two loci using Bartonella-specific primers. 
Bartonella were prevalent among all five species, with 13-lined ground squirrels (Ictidomys tridecemlineatus) 
serving as a likely reservoir of the pathogen B. washoensis, and other rodents serving as reservoirs of the pathogens 
B. grahamii and B. vinsonii subsp. arupensis. These results demonstrate the value of studies of disease ecology in 
grassland systems, particularly in the context of habitat restoration and human–vector interactions.
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Bartonella is a genus of bacteria of increasing research interest 
due to the emergence of numerous zoonotic diseases associated 
with several of its members (Karem et al. 2000; Breitschwerdt 
et  al. 2010; Angelakis and Raoult 2014). Bartonella species 
are obligate intracellular parasites that infect the endothelial 
lining of blood vessels and erythrocytes (Pulliainen and Dehio 
2012). Recently, several new species of Bartonella have been 
identified, (Sato et al. 2013; Li et al. 2015; McKee et al. 2017) 
including pathogenic species (Eremeeva et al. 2007; Vayssier-
Taussat et  al. 2016). Additionally, while infections have his-
torically been considered rare, diagnoses of both human and 
non-human Bartonella infections have increased (Breitschwerdt 
et al. 2010; Chomel and Kasten 2010). Concurrently, studies on 
identification of potential reservoirs of Bartonella are lacking, 
particularly in prairie ecosystems (Jardine et al. 2005; Buffet 
et al. 2013).

Bartonella are transmitted both horizontally and vertic-
ally. Horizontal transmission occurs primarily through blood-
feeding arthropods (Billeter et al. 2008) including biting flies 
(Dehio et al. 2004), sand flies (Ready 2013), fleas (Chomel et al. 
1996; Stevenson et  al. 2003), and lice (Alsmark et  al. 2004; 
Bonilla et al. 2009). The role of ticks as vectors of Bartonella 

is poorly understood, with studies identifying the presence of 
pathogenic Bartonella species in ticks (Adelson et  al. 2004; 
Kim et al. 2005; Nelder et al. 2016), but conflicting evidence 
on the competency of ticks as vectors (Angelakis et al. 2010; 
Reis et  al. 2011; Müller et  al. 2016). Comparatively, vertical 
transmission has been identified in both vectors (Halos et  al. 
2004; de Bruin et al. 2015; Leulmi et al. 2015) and reservoirs 
(Kosoy et al. 1998; Cevidanes et al. 2017; Tołkacz et al. 2018). 
However, this transmission is not universal, with several spe-
cies showing no evidence of vertical transmission (Bown et al. 
2004; Bouhsira et al. 2013; Morick et al. 2013).

Of the 35 currently recognized species of Bartonella, many 
are known to be pathogenic to cattle, companion animals 
(Breitschwerdt and Kordick 2000; Breitschwerdt et al. 2010), 
and humans (Gutiérrez et al. 2015; Silaghi et al. 2016). In hu-
mans, these species include the causative agents of Carrion’s 
disease, cat-scratch disease, and multiple agents of myocar-
ditis, endocarditis, and tumorigenesis in immunocompromised 
individuals (Karem et  al. 2000; Pulliainen and Dehio 2012). 
Although it is not understood if Bartonella are pathogenic to 
rodents (Lei and Olival 2014; Kim et al. 2016; Malania et al. 
2016), at least five species isolated from rodents are known to 
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be pathogenic to humans (Silaghi et al. 2016), and several ro-
dents have been implicated as reservoirs of Bartonella species 
(Buffet et al. 2013). These rodent species cover a wide taxo-
nomic breadth, including members of Cricetidae (Kosoy et al. 
2004; Bai et al. 2011), Muridae (Ellis et al. 1999; Mediannikov 
et  al. 2005; Kosoy et  al. 2010), and Sciuridae (Kosoy et  al. 
2003; Stevenson et al. 2003; Bai et al. 2008a, 2008b).

Among these potential reservoirs, only the black-tailed prairie 
dog (Cynomys ludovicianus) is primarily associated with prairie 
habitat. Prairie habitats are of increasing interest with regard to 
disease reservoirs and transmission. With as much as 99% of 
historical tallgrass prairies in the United States converted for 
human use (Samson and Knopf 1994), a great effort has focused 
on prairie restoration (Ruiz Jaen and Aide 2005; Wortley et al. 
2013). In many cases, these restorations lie within close prox-
imity to urban and suburban areas (Fischer et  al. 2013; Klaus 
2013). While there are numerous benefits to such restoration, one 
downside is increased contact between humans and both vectors 
and reservoirs of disease due to incidental and recreational con-
tact (Miller 2006; Tóth et al. 2009). This contact creates an in-
creased potential for zoonotic transmission. As such, studies of 
rodent communities in restored prairie ecosystems are of high 
consequence for the identification of potential disease reservoirs.

In this study, we determined if zoonotic Bartonella were 
present among prairie-dwelling rodents in a restored tallgrass 
ecosystem in a suburban area of the Midwest region of the 
United States. We also assessed the temporal dynamics of prev-
alence of those Bartonella among rodents. 

Materials and Methods
Study site and sample collection.—We collected samples 

at the Distillery Road Conservation Area in Boone County, 
Illinois (42.2589°N, 88.9095°W). This site is a ~30-ha tallgrass 
prairie restoration in a suburban area managed by the Boone 
County Conservation District (BCCD) that was previously 
used for crop agriculture. Prairie restoration efforts began in 
2003, with various patches undergoing restoration through 
2010. Management efforts include seeding with native grasses 
and forbs, invasive species removal, and whole site controlled 
burns on a 3-year cycle (BCCD 2018).

Two 0.6-ha trapping grids were established in 2015 (40 m 
× 150 m) in separate patches of the restoration. The first was 
placed in a patch restored in 2003, and the second in a patch 
restored in 2008. The grids were separated by ~250 m of con-
tiguous prairie habitat. On each grid, we established 60 trap 
stations (four rows of 15 traps) separated by 10 m. We placed 
either a Sherman live trap (H. B.  Sherman Co., Tallahassee, 
Florida) or modified Fitch trap (Rose 1973) at each station in 
an alternating manner. We conducted trapping on 2 consecutive 
days each week from mid-May to mid-September from 2015 
to 2017. Traps were baited with commercial squirrel and critter 
blend (Kaytee Products, Chilton, Wisconsin) between 1,600 
and 1,800 h and checked the next morning between 0600 and 
0800 h. This maximized the likelihood of catching both diurnal 
and nocturnal species. 

For each captured individual, we recorded species, age, sex, 
reproductive condition, and mass. Animals were examined for 
ticks, and collected ticks were placed in 70% ethanol solution 
for later DNA extraction. The distal phalanx of the second lat-
eral digit of the hind foot was removed using sterile scissors and 
was also stored in 70% ethanol for later DNA extraction. Toe 
clips were chosen over ear punches or tail clips due to the small 
size of the pinna of Ictidomys and Microtus species, and the 
tendency of the skin of Ictidomys tails to detach when handled. 
Retroorbital bleeding was not considered due to the need to 
anesthetize animals and the inclusion of inexperienced under-
graduate students in sampling. In addition, toe clips provided 
an opportunity to differentiate between recaptured and new an-
imals. Toe clipping was superior to the use of ear tags due to the 
incidence of ear tag loss in burrowing species and the lack of 
a need for individual identification. After we completed tissue 
sampling, animals were retained in hand to ensure bleeding had 
ceased and were released at the site of capture within 5 min 
of initial handling. Protocols for animal handling and tissue 
sampling were approved by the Illinois Department of Natural 
Resources and the BCCD. No animal care and use committee 
existed at the institution where this research was initiated, but 
all methods complied with guidelines of the American Society 
of Mammalogists (Sikes et al. 2016).

DNA extraction.—Prior to extraction, tissue samples were 
removed from ethanol, dried, and diced using a sterile scalpel 
blade to maximize surface area. Tissue samples were then ex-
tracted using a standard ammonium acetate procedure with 
ethanol precipitation (Supplementary Data SD1). Following 
extraction, DNA was reconstituted and stored in 50 µl of Tris-
EDTA buffer. 

Genotyping of Microtus species.—To verify the identity of 
Microtus species, we genotyped individuals at a microsatellite 
locus of the avpr1a gene using established methods (Fink et al. 
2006; Henterly et al. 2011). This method distinguishes species 
on the basis of the number of repeats with M. pennsylvanicus 
producing a 200–300 bp product and M. ochrogaster producing 
a 600–800 bp product.

Identification of Bartonella presence.—We screened rodent 
DNA samples for the presence of Bartonella species via PCR 
of the 16-23S intergenic spacer (IGS) region using the methods 
of Jensen et al. (2000). Primers in our study were designed to 
specifically target and amplify a portion of the 16S–23S IGS 
region of medically relevant Bartonella species. The forward 
and reverse primers were 5′-CTCTTTCTTCAGATGATGA
TCC-3′ and 5′-AACCAACTGAGCTACAAGCCCT-3′, respec-
tively. Targets were amplified in a 50 µl reaction and each PCR 
contained a sample run with sterile water rather than sample 
DNA to act as a negative control. Each DNA sample was run 
two to three times to verify amplification. Products were then 
loaded onto a 2% agarose gel as described above and electro-
phoresed for 60 min at 100 V in 1× TBE buffer before visu-
alization on a UV light box. PCR products between 150 and 
250 bp were identified as positive.

Any specimens that successfully amplified for the IGS region 
were further screened via nested PCR of a portion of the citrate 
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synthase gene (gltA) using the methods of Bai et  al. (2016). 
Targets were amplified in a 50 µl reaction and each PCR con-
tained a sample run with sterile water rather than sample DNA 
to act as a negative control. Products were loaded onto a 2% 
agarose gel and electrophoresed for 90 min at 100V in 1× TBE 
buffer. A specimen was considered positive for Bartonella if an 
~350 bp product was identified. 

Bartonella species identification.—Due to the lack of relia-
bility of PCR-only methods in identifying Bartonella, and the 
desire to identify isolates to species, a multilocus sequencing 
approach was performed as recommended by Kosoy et  al. 
(2018). To do this, amplicons were gel-extracted using the 
method of Sun et al. (2012) and sequenced in both directions 
(Eurofins MWG). Resulting sequences were aligned using 
BioEdit version 7.0.5 and sequence identity was determined 
using BLAST (Altschul et  al. 1990). A  minimum sequence 
similarity of 96% was required to identify gltA sequences to 
species (La Scola et al. 2003). The gltA sequence identity was 
also used for species identification if an IGS sequence was most 
similar to an unidentified Bartonella, or IGS sequences simi-
larity was below 96%. Upon successful species identification, 
unique sequences were deposited in GenBank (accession num-
bers: MK984778–MK984795). 

Statistical analyses.—We used chi-square tests to determine 
if abundance of rodent species were consistent among years 
during the study. For each species, we calculated the average 
infection rate within and across years and used the Clopper–
Pearson method to determine the 95% confidence interval of 
those rates. A logistic regression model was fit to the data (JMP 
version 10; SAS Institute Inc. 2012) to determine which vari-
ables (species, year, species × year) explained the prevalence 
of Bartonella. 

Results
Over the 3  years, we captured and sampled 700 individuals 
representing five species: 13-lined ground squirrel, Ictidomys 
tridecemlineatus; meadow jumping mouse, Zapus hudsonius; 
deer mouse, Peromyscus maniculatus; meadow vole, 
M. pennsylvanicus; and prairie vole, M. ochrogaster. Following 
microsatellite genotyping, it was confirmed that the majority 
of animals trapped were M. pennsylvanicus (n = 275) followed 
by I.  tridecemlineatus (n = 193) and Z. hudsonius (n = 176). 
Two other species were much less abundant: M. ochrogaster 
(n  =  34) and P.  maniculatus (n  =  22). Three of the species 
had consistent abundances across years: I.  tridecemlineatus 
(χ 22 = 0.69, P = 0.707), M. ochrogaster (χ 22 = 2.17, P = 0.337), 
and M.  pennsylvanicus (χ 2

2  =  5.29, P  =  0.071). Both 
P. maniculatus (χ 2

2 = 19.73, P < 0.001) and Z. hudsonius (χ 
2
2 = 14.33, P < 0.001) exhibited temporal fluctuations during 

the study. 
Bartonella was identified in all five captured species. After 

fitting a logistic regression model (χ 29 = 43.54, P < 0.0001), log 
ratio tests indicated there was no effect of sampling year on the 
prevalence of Bartonella (χ 2

1 = 2.481, P = 0.1152). However, 
there was an effect of species (χ 2

4 = 29.709, P = 0.0001) on 
prevalence, and an interaction effect between species and year  

(χ 24 = 12.538, P = 0.0138). Infection rates were similar among 
most species, with the exception of I. tridecemlineatus, which ex-
hibited a rate that was 1.8–2.3 times that of other species (Table 1).  
There was no consistent pattern across species with regard to in-
fection rates over time (Fig. 1). Zapus hudsonius exhibited little 
variation during the study. By comparison, I. tridecemlineatus 
and M. ochrogaster exhibited modest interannual variation and 
M. pennsylvanicus experienced a sharp decline in infection rate 
during the study. While P. maniculatus exhibited a high infec-
tion rate in 2015 (n = 17); small sample sizes in 2016 (n = 4) 
and 2017 (n = 1) resulted in no observed infections. 

Eight Bartonella genotypes were identified from IGS 
amplicons. Three genotypes were most similar to a B. grahamii 
reference genome (accession: CP001621; 95.06–96.89% sim-
ilarity; Fig. 2). All specimens with these genotypes shared 
a common gltA genotype that was most similar to the same 
B. grahamii reference genome (accession: CP001621; 99.21% 
similarity). A fourth IGS genotype was most similar to a ref-
erence sequence for an uncultured Bartonella species (acces-
sion: KX267694; 97.33% similarity). This genotype was found 
in M. pennsylvanicus and P. maniculatus harboring one of two 
gltA genotypes. Each of those gltA genotypes was most similar 
to a reference sequence from B. vinsonii subsp. arupensis (ac-
cession: FJ946836; 96.99–97.27% similarity; Fig. 2). The re-
maining four IGS genotypes were found in I. tridecemlineatus 
and were highly similar to a reference sequence for B. 
washoensis (accession: AB674251; 98.24–99.41% similarity). 
Ground squirrels with those four IGS genotypes contained one 
of four gltA genotypes, all of which were most similar to a ref-
erence sequence from B.  washoensis (accession: DQ834440; 
97.87–99.73% similarity; Fig. 2).

Discussion
Numerous studies have identified the role of rodent species as 
reservoirs of pathogenic Bartonella strains (Kosoy et al. 2012; 
Buffet et al. 2013; Gutiérrez et al. 2015). However, these studies 
were mainly focused in western North America, Europe, and 
Asia. As a result, several widespread North American species 
have not been assessed as potential reservoirs of Bartonella, 
including prairie-dwelling rodents in the midwestern United 
States. This study identified at least one likely reservoir of 
these bacteria, I. tridecemlineatus, while also identifying sev-
eral other candidates, and adds to an expanding understanding 
of the prevalence of pathogenic Bartonella species among 
small mammals (Buffet et al. 2013). Our results also suggest 

Table 1.—Overall Bartonella infection rates and confidence inter-
vals (CI) for the five rodent species tested during 2015–2017 in Illi-
nois. 

Species No. individuals Infection rate (%) 95% CI (%)

Ictidomys tridecemlineatus 193 39.38 32.44–46.65
Microtus ochrogaster 275 17.65 6.76–34.53
Microtus pennsylvanicus 34 18.91 14.46–24.0
Peromyscus maniculatus 22 18.18 5.19–40.28
Zapus hudsonius 176 21.59 15.76–28.41
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that habitat restoration efforts in human-dominated landscapes 
may have the unintended consequence of increasing the like-
lihood of zoonotic disease transmission to humans and com-
panion animals.

Infection rates exhibited substantial variation among spe-
cies and were highest among I.  tridecemlineatus. Of the spe-
cies of ground squirrels sampled elsewhere, albeit mostly 
with small sample sizes, all show evidence of Bartonella in-
fection (Stevenson et al. 2003; Inoue et al. 2011; Kosoy et al. 
2012; Ziedins et al. 2016). Most of this research has focused 

on Richardson's ground squirrel (Urocitellus richardsonii) in 
Nevada and Saskatchewan (Jardine et  al. 2005; Kosoy et  al. 
2003) with the latter study demonstrating a nearly 50% infection 
rate. While our estimated infection rate in I. tridecemlineatus 
(39.38%) is lower than that identified by Kosoy et al. (2003) for 
U. richardsonii, it is similar to the 37% Jardine et al. (2006) es-
timated for adult U. richardsonii (χ 2 = 0.636, P = 0.425). These 
data suggest that I. tridecemlineatus may represent a reservoir 
of a known human pathogen in the midwestern United States.

Due to small sample sizes and inconsistent capture frequency 
across years, it is not possible to make similar assertions about 
the reservoir status of P. maniculatus in the midwestern United 
States. However, the small number of P. maniculatus that tested 
positive in our study (four out of 22) all harbored B. vinsonii 
arupensis. This supports the findings of other studies that have 
identified P.  maniculatus as a likely reservoir of B.  vinsonii 
arupensis (Bai et al. 2011; Buffet et al. 2013; Rubio et al. 2014).

Our data represent the first large-scale assessment of 
Bartonella in any Microtus populations in North America. 
Baker (1946) previously identified the presence of B. vinsonii 
vinsonii in five out of 10 M. pennsylvanicus captured in Quebec, 
Canada. Since then, Inoue et al. (2009a) identified the presence 
of B.  grahamii in three M.  ochrogaster from South Dakota. 
Although our data indicate Microtus in the midwestern United 
States harbor Bartonella at lower levels than in those studies, 
it is difficult to compare prevalence rates because those studies 
had small sample sizes. In addition, studies with larger sample 
sizes conducted on European Microtus species found prev-
alence rates between 20% and 27.7% (Engbaek and Lawson 
2004; Pawelczyk et al. 2004), which are in line with the rates 
in this study for M.  pennsylvanicus (28.57% in 2015)  and 
M. ochrogaster (20% in 2017). In our study, M. pennsylvanicus 
also demonstrated interannual variation in infection rate with 
an unexplained marked decrease in 2017. These results were 
verified by reperforming the PCR analysis. Without additional 
sampling, however, it is not possible to determine if the de-
crease was due to random fluctuation or unmeasured environ-
mental factors.

We identified two species of pathogenic Bartonella in 
Microtus at our study site. Bartonella grahamii has been as-
sociated with cases of neuroretinitis (Kerkhoff et al. 1999) and 
cat-scratch disease (Oksi et al. 2013) in immunocompromised 
individuals. This is the first study to identify the presence of 
B. grahamii in M. pennsylvanicus. However, several European 
studies reported that B. grahamii is widespread among other 
Microtus species (Telfer et  al. 2007; Tołkacz et  al. 2018). 
Additionally, our findings of B.  grahamii in M.  ochrogaster 
support those of Inoue et  al. (2009a). Collectively, these re-
sults suggest a role of North American Microtus in the enzootic 
cycle of B. grahamii.

We also identified the presence of B. vinsonii subsp. arupensis in 
M. pennsylvanicus, albeit at a lower prevalence (21% of infections) 
than B. grahamii. This is the first time arupensis has been identi-
fied in any Microtus species. This pathogen is more commonly 
associated with Peromyscus (Bai et al. 2011; Ziedins et al. 2016) 
but arupensis has been identified in other vole species in Alaska 

Fig. 1.—Percentage (±95% CI) of captured individuals (n = 700) that 
tested positive for Bartonella between 2015 and 2017. Five species of 
rodents were tested for Bartonella via PCR of the intergenic spacer 
region using Bartonella-specific primers: 13-lined ground squirrels 
(Ictidomys tridecemlineatus; n = 193), meadow jumping mice (Zapus 
hudsonius; n = 176), prairie voles (Microtus ochrogaster; n = 34), deer 
mice (Peromyscus maniculatus; n = 22), and meadow voles (Microtus 
pennsylvanicus; n = 275).

Fig. 2.—Distribution of Bartonella species identified among DNA 
collected from rodent tissues. Bartonella species were identified 
by sequencing of two loci using species-specific primers. Most ro-
dent species harbored only a single species of Bartonella. Microtus 
pennsylvanicus harbored two species with 79% of specimens con-
taining B. grahamii and 21% containing B. vinsonii subsp. arupensis.
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(Matsumoto et al. 2010). Likewise, the closely related B. vinsonii 
subsp. vinsonii was first characterized in M. pennsylvanicus (Baker 
1946). Further, the co-occurrence of infected M. pennsylvanicus 
and P. maniculatus, and the high degree of sequence similarity of 
B. vinsonii subsp. arupensis among rodent species in this study, 
suggests the high likelihood that this bacterium can be transmitted 
between reservoirs via arthropod vectors.

Zapus hudsonius is also of interest as a potential reservoir. 
This species exhibited the most consistent prevalence rates 
across the study and was also one of the most abundant species. 
No studies have focused on Bartonella prevalence in Zapus 
or any North American members of Dipodidae (Buffet et  al. 
2013). Only one study examined Bartonella in any member of 
Dipodidae and found infection rates ranging from 0% to 81% 
among jerboas in the Japanese pet trade (Inoue et al. 2009b). 
Our data indicate that Z. hudsonius harbor B. grahamii at sim-
ilar or higher levels than Microtus species (Table 1). Such 
prevalence rates, combined with the wide geographic range of 
the species and its preference for grassland habitats, suggest 
Z. hudsonius may be a reservoir of Bartonella in these ecosys-
tems. An increased focus on Zapus is warranted in the study of 
Bartonella and other vector-borne diseases.

Our results indicate that prairie systems, particularly prairie res-
torations, may play a substantial role in zoonotic transmission of 
Bartonella. Urban and suburban restorations are capable of sup-
porting diverse and stable populations of small mammals. Many 
of these are potential reservoirs of pathogenic Bartonella and 
other vector-borne pathogens. In this study, all five rodent spe-
cies at the site were infected with Bartonella, and all Bartonella 
species were known pathogens. In addition, these areas present 
contact points where reservoirs, vectors, and dead-end hosts, such 
as humans, comingle, permitting pathogen spillover (Alexander 
et al. 2018). This interaction is enhanced in recreation areas, such 
as mowed paths, where vectors are more likely to occur (Hahn 
et al. 2018), increasing the likelihood of disease transmission to 
people using these areas (McDaniel et al. 2018).

To understand more broadly how these prairie rodents func-
tion in harboring and transmitting pathogenic Bartonella, it is 
essential to conduct additional studies of disease prevalence in 
other grassland ecosystems. These studies are particularly val-
uable in the midwestern United States where these pathogens 
and their reservoirs are poorly researched. Moreover, it is nec-
essary to assess the ability of these organisms to transmit the 
diseases to known and potential vectors. 
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